A NOTE ON EDGE-CONNECTIVITY OF THE CARTESIAN PRODUCT OF GRAPHS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On super edge-connectivity of Cartesian product graphs

The super edge-connectivity λ′ of a connected graph G is the minimum cardinality of an edge-cut F in G such that every component of G − F contains at least two vertices. LetGi be a connected graph with order ni , minimum degree δi and edge-connectivity λi for i = 1, 2. This article shows that λ′(G1 × G2) ≥ min{n1 λ2,n2 λ1,λ1 + 2λ2, 2λ1+λ2} forn1,n2 ≥ 3 andλ′(K2×G2) = min{n2, 2λ2}, which general...

متن کامل

On restricted edge connectivity of regular Cartesian product graphs

Explicit expressions of the restricted edge connectivity of the Cartesian product of regular graphs are presented; some sufficient conditions for regular Cartesian product graphs to be maximally or super restricted edge connected are obtained as a result.

متن کامل

Connectivity of Cartesian product graphs

Use vi , i , i , i to denote order, connectivity, edge-connectivity and minimum degree of a graphGi for i=1, 2, respectively. For the connectivity and the edge-connectivity of the Cartesian product graph, up to now, the best results are (G1×G2) 1+ 2 and (G1×G2) 1+ 2. This paper improves these results by proving that (G1×G2) min{ 1+ 2, 2+ 1} and (G1×G2)= min{ 1+ 2, 1v2, 2v1} ifG1 andG2 are conne...

متن کامل

A Note on Tensor Product of Graphs

Let $G$ and $H$ be graphs. The tensor product $Gotimes H$ of $G$ and $H$ has vertex set $V(Gotimes H)=V(G)times V(H)$ and edge set $E(Gotimes H)={(a,b)(c,d)| acin E(G):: and:: bdin E(H)}$. In this paper, some results on this product are obtained by which it is possible to compute the Wiener and Hyper Wiener indices of $K_n otimes G$.

متن کامل

On the edge-connectivity of C_4-free graphs

Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2011

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s000497271100219x